EconPapers    
Economics at your fingertips  
 

On the solution stability of parabolic optimal control problems

Alberto Domínguez Corella (), Nicolai Jork () and Vladimir M. Veliov ()
Additional contact information
Alberto Domínguez Corella: Vienna University of Technology
Nicolai Jork: Vienna University of Technology
Vladimir M. Veliov: Vienna University of Technology

Computational Optimization and Applications, 2023, vol. 86, issue 3, No 9, 1035-1079

Abstract: Abstract The paper investigates stability properties of solutions of optimal control problems constrained by semilinear parabolic partial differential equations. Hölder or Lipschitz dependence of the optimal solution on perturbations are obtained for problems in which the equation and the objective functional are affine with respect to the control. The perturbations may appear in both the equation and in the objective functional and may nonlinearly depend on the state and control variables. The main results are based on an extension of recently introduced assumptions on the joint growth of the first and second variation of the objective functional. The stability of the optimal solution is obtained as a consequence of a more general result obtained in the paper–the metric subregularity of the mapping associated with the system of first order necessary optimality conditions. This property also enables error estimates for approximation methods. A Lipschitz estimate for the dependence of the optimal control on the Tikhonov regularization parameter is obtained as a by-product.

Keywords: 49K20; 35K58; 49K40; 49J40 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-023-00473-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:86:y:2023:i:3:d:10.1007_s10589-023-00473-4

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-023-00473-4

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:coopap:v:86:y:2023:i:3:d:10.1007_s10589-023-00473-4