Generic linear convergence through metric subregularity in a variable-metric extension of the proximal point algorithm
R. Tyrrell Rockafellar ()
Additional contact information
R. Tyrrell Rockafellar: University of Washington
Computational Optimization and Applications, 2023, vol. 86, issue 3, No 18, 1327-1346
Abstract:
Abstract The proximal point algorithm finds a zero of a maximal monotone mapping by iterations in which the mapping is made strongly monotone by the addition of a proximal term. Here it is articulated with the norm behind the proximal term possibly shifting from one iteration to the next, but under conditions that eventually make the metric settle down. Despite the varying geometry, the sequence generated by the algorithm is shown to converge to a particular solution. Although this is not the first variable-metric extension of proximal point algorithm, it is the first to retain the flexibility needed for applications to augmented Lagrangian methodology and progressive decoupling. Moreover, in a generic sense, the convergence it generates is Q-linear at a rate that depends in a simple way on the modulus of metric subregularity of the mapping at that solution. This is a tighter rate than previously identified and reveals for the first time the definitive role of metric subregularity in how the proximal point algorithm performs, even in fixed-metric mode.
Keywords: Maximal monotone mappings; Proximal point algorithm; Variable-metric implementation; Localized executability; Linear convergence guarantees; Metric subregularity; Convex optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-023-00494-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:86:y:2023:i:3:d:10.1007_s10589-023-00494-z
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-023-00494-z
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().