A projected-search interior-point method for nonlinearly constrained optimization
Philip E. Gill () and
Minxin Zhang ()
Additional contact information
Philip E. Gill: University of California San Diego
Minxin Zhang: University of California Los Angeles
Computational Optimization and Applications, 2024, vol. 88, issue 1, No 2, 37-70
Abstract:
Abstract This paper concerns the formulation and analysis of a new interior-point method for constrained optimization that combines a shifted primal-dual interior-point method with a projected-search method for bound-constrained optimization. The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and dual variables. Shifts on the dual variables allow the method to be safely “warm started” from a good approximate solution and avoids the possibility of very large solutions of the associated path-following equations. The approximate Newton direction is used in conjunction with a new projected-search line-search algorithm that employs a flexible non-monotone quasi-Armijo line search for the minimization of each penalty-barrier function. Numerical results are presented for a large set of constrained optimization problems. For comparison purposes, results are also given for two primal-dual interior-point methods that do not use projection. The first is a method that shifts both the primal and dual variables. The second is a method that involves shifts on the primal variables only. The results show that the use of both primal and dual shifts in conjunction with projection gives a method that is more robust and requires significantly fewer iterations. In particular, the number of times that the search direction must be computed is substantially reduced. Results from a set of quadratic programming test problems indicate that the method is particularly well-suited to solving the quadratic programming subproblem in a sequential quadratic programming method for nonlinear optimization.
Keywords: Nonlinearly constrained optimization; Interior-point methods; Primal-dual methods; Shifted penalty and barrier methods; Projected-search methods; Armijo line search; Augmented Lagrangian methods (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10589-023-00549-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:88:y:2024:i:1:d:10.1007_s10589-023-00549-1
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-023-00549-1
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().