A benchmark generator for scenario-based discrete optimization
Matheus Bernardelli Moraes () and
Guilherme Palermo Coelho ()
Additional contact information
Matheus Bernardelli Moraes: University of Campinas (UNICAMP)
Guilherme Palermo Coelho: University of Campinas (UNICAMP)
Computational Optimization and Applications, 2024, vol. 88, issue 1, No 10, 349-378
Abstract:
Abstract Multi-objective evolutionary algorithms (MOEAs) are a practical tool to solve non-linear problems with multiple objective functions. However, when applied to expensive black-box scenario-based optimization problems, MOEA’s performance becomes constrained due to computational or time limitations. Scenario-based optimization refers to problems that are subject to uncertainty, where each solution is evaluated over an ensemble of scenarios to reduce risks. A primary reason for MOEA’s failure is that algorithm development is challenging in these cases as many of these problems are black-box, high-dimensional, discrete, and computationally expensive. For this reason, this paper proposes a benchmark generator to create fast-to-compute scenario-based discrete test problems with different degrees of complexity. Our framework uses the structure of the Multi-Objective Knapsack Problem to create test problems that simulate characteristics of expensive scenario-based discrete problems. To validate our proposition, we tested four state-of-the-art MOEAs in 30 test instances generated with our framework, and the empirical results demonstrate that the suggested benchmark generator can analyze the ability of MOEAs in tackling expensive scenario-based discrete optimization problems.
Keywords: Black-box optimization; Evolutionary computation; Multi-objective optimization; Test problems; Uncertainty quantification (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10589-024-00551-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:88:y:2024:i:1:d:10.1007_s10589-024-00551-1
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-024-00551-1
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().