Efficient gradient-based optimization for reconstructing binary images in applications to electrical impedance tomography
Paul R. Arbic () and
Vladislav Bukshtynov ()
Additional contact information
Paul R. Arbic: Florida Institute of Technology
Vladislav Bukshtynov: Florida Institute of Technology
Computational Optimization and Applications, 2024, vol. 88, issue 1, No 11, 379-403
Abstract:
Abstract A novel and highly efficient computational framework for reconstructing binary-type images suitable for models of various complexity seen in diverse biomedical applications is developed and validated. Efficiency in computational speed and accuracy is achieved by combining the advantages of recently developed optimization methods that use sample solutions with customized geometry and multiscale control space reduction, all paired with gradient-based techniques. The control space is effectively reduced based on the geometry of the samples and their individual contributions. The entire 3-step computational procedure has an easy-to-follow design due to a nominal number of tuning parameters making the approach simple for practical implementation in various settings. Fairly straightforward methods for computing gradients make the framework compatible with any optimization software, including black-box ones. The performance of the complete computational framework is tested in applications to 2D inverse problems of cancer detection by electrical impedance tomography (EIT) using data from models generated synthetically and obtained from medical images showing the natural development of cancerous regions of various sizes and shapes. The results demonstrate the superior performance of the new method and its high potential for improving the overall quality of the EIT-based procedures.
Keywords: Binary-type images; Electrical impedance tomography; Cancer detection problem; Gradient-based optimization; PDE-constrained optimal control; Control space parameterization; Noisy measurements (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10589-024-00553-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:88:y:2024:i:1:d:10.1007_s10589-024-00553-z
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-024-00553-z
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().