Distributed inexact Newton method with adaptive step sizes
Dušan Jakovetić (),
Nataša Krejić () and
Greta Malaspina ()
Additional contact information
Dušan Jakovetić: University of Novi Sad
Nataša Krejić: University of Novi Sad
Greta Malaspina: Università degli studi di Firenze
Computational Optimization and Applications, 2025, vol. 91, issue 2, No 12, 683-715
Abstract:
Abstract We consider two formulations for distributed optimization wherein N nodes in a generic connected network solve a problem of common interest: distributed personalized optimization and consensus optimization. A new method termed DINAS (Distributed Inexact Newton method with Adaptive step size) is proposed. DINAS employs large adaptively computed step sizes, requires a reduced global parameters knowledge with respect to existing alternatives, and can operate without any local Hessian inverse calculations nor Hessian communications. When solving personalized distributed learning formulations, DINAS achieves quadratic convergence with respect to computational cost and linear convergence with respect to communication cost, the latter rate being independent of the local functions condition numbers or of the network topology. When solving consensus optimization problems, DINAS is shown to converge to the global solution. Extensive numerical experiments demonstrate significant improvements of DINAS over existing alternatives. As a result of independent interest, we provide for the first time convergence analysis of the Newton method with the adaptive Polyak’s step size when the Newton direction is computed inexactly in centralized environment.
Keywords: Newton method; Distributed optimization; Adaptive step size (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10589-025-00666-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:91:y:2025:i:2:d:10.1007_s10589-025-00666-z
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-025-00666-z
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().