Engineering doc2vec for automatic classification of product descriptions on O2O applications
Hana Lee () and
Young Yoon ()
Additional contact information
Hana Lee: Hongik University
Young Yoon: Hongik University
Electronic Commerce Research, 2018, vol. 18, issue 3, No 1, 433-456
Abstract:
Abstract In this paper, we develop an automatic product classifier that can become a vital part of a natural user interface for an integrated online-to-offline (O2O) service platform. We devise a novel feature extraction technique to represent product descriptions that are expressed in full natural language sentences. We specifically adapt doc2vec algorithm that implements the document embedding technique. Doc2vec is a way to predict a vector of salient contexts that are specific to a document. Our classifier is trained to classify a product description based on the doc2vec-based feature that is augmented in various ways. We trained and tested our classifier with up to 53,000 real product descriptions from Groupon, a popular social commerce site that also offers O2O commerce features such as online ordering for in-store pick-up. Compared to the baseline approaches of using bag-of-words modeling and word-level embedding, our classifier showed significant improvement in terms of classification accuracy when our adapted doc2vec-based feature was used.
Keywords: O2O application; doc2vec; Online advertisement; Intelligent classification; Paragraph embedding (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10660-017-9268-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:elcore:v:18:y:2018:i:3:d:10.1007_s10660-017-9268-5
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10660
DOI: 10.1007/s10660-017-9268-5
Access Statistics for this article
Electronic Commerce Research is currently edited by James Westland
More articles in Electronic Commerce Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().