Predicting consumer preferences in electronic market based on IoT and Social Networks using deep learning based collaborative filtering techniques
Sadaf Shamshoddin,
Jameel Khader () and
Showkat Gani
Additional contact information
Sadaf Shamshoddin: King Saud University
Jameel Khader: King Saud University
Showkat Gani: King Saud University
Electronic Commerce Research, 2020, vol. 20, issue 2, No 2, 258 pages
Abstract:
Abstract Collaborative filtering plays an important role in predicting consumer preferences in the electronic market. Most of the users purchased the products in the electronic market with the help of the Internet of Things (IoT) and Social Networks. Predicting consumer preference with the consumer’s history is a vital challenge in the recommendation systems. The researchers propose varieties of collaborative filtering techniques, but the accuracy of the results is poor. The main aim of this paper is to propose a deep learning with collaborative filtering technique for the recommendation system to Predicting User preferences from the IoT devices and Social Networks that are beneficial for users based on their preferences in electronic markets. In this paper similarity, neighborhood-based collaborative filtering model (SN-CFM) is introduced. The introduced model recommends the products by predicting consumer preferences based on the similarity of the consumers and neighborhood products. In addition, the introduced deep learning concept gets the information from the previous analysis before making rating to the items. The introduced SN-CFM model compared with other existing recommendation approaches. The results prove that the efficiency of the introduced model.
Keywords: Prediction; IoT; Deep learning with collaborative filtering; Recommendations; Social Networks (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10660-019-09377-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:elcore:v:20:y:2020:i:2:d:10.1007_s10660-019-09377-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10660
DOI: 10.1007/s10660-019-09377-0
Access Statistics for this article
Electronic Commerce Research is currently edited by James Westland
More articles in Electronic Commerce Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().