EconPapers    
Economics at your fingertips  
 

Rising stars prediction in reviewer network

Aftab Nawaz () and Malik Msi ()
Additional contact information
Aftab Nawaz: COMSATS University Islamabad
Malik Msi: Capital University of Science and Technology

Electronic Commerce Research, 2022, vol. 22, issue 1, No 4, 53-75

Abstract: Abstract The prediction of rising stars is a challenging task in social networks. To this end, publicly available online social databases are considered to retrieve meaningful information for prediction of future trends. According to our knowledge, we are the first to identify the rising stars in review domain by applying machine leaning methods. More specifically, we predict rising reviewers in yelp review network. Metadata, Rrecency-frequency-activity, and temporal categories are considered, and various features are proposed for each type. In addition, two performance measures are developed to evaluate the rising stars. As a binary classification problem, three popular machine learning models, 10-fold cross validation and two newly designed yelp reviewer’s datasets are used. The proposed framework for rising stars is evaluated using various experiments, such as impact of individual feature, category-wise and model-wise performance. As an outcome, we find that our model demonstrates promising accuracy and f-measure values. In addition, two rankings of top-10 rising reviewers are presented (using weighted score and evolution score), and these rankings are validated against their current status from yelp.com.

Keywords: Rising stars; Reviewer; Network; Star prediction; Reviewer network (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10660-021-09476-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:elcore:v:22:y:2022:i:1:d:10.1007_s10660-021-09476-x

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10660

DOI: 10.1007/s10660-021-09476-x

Access Statistics for this article

Electronic Commerce Research is currently edited by James Westland

More articles in Electronic Commerce Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:elcore:v:22:y:2022:i:1:d:10.1007_s10660-021-09476-x