Novel next-group recommendation approach based on sequential market basket information
Li-Ching Ma ()
Additional contact information
Li-Ching Ma: National United University
Electronic Commerce Research, 2023, vol. 23, issue 4, No 16, 2399-2418
Abstract:
Abstract A market basket is a set of items included in a retail assortment that a customer buys on a shopping trip. The purpose of market basket analysis is to persuade a customer to spend more money through upselling or cross-selling. Most recommendation systems only suggest a single next-item or the top n items that a customer is most likely to buy. A company might succeed in convincing a customer to spend more money to increase sales revenue if a recommendation system can suggest the next or top n groups of items that customers are likely to buy according to the items in their basket. Based on the similarity upper approximation clustering, Borda majority count and PrefixSpan algorithm, this paper proposes a novel next-group recommendation approach according to sequential market basket information. Compared with the previous methods, the proposed approach can provide next-group instead of next-item recommendation, which may create more opportunities for customers to increase their spending.
Keywords: Sequential data mining; Product recommendation; Group; Market basket; Purchase behavior (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10660-022-09543-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:elcore:v:23:y:2023:i:4:d:10.1007_s10660-022-09543-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10660
DOI: 10.1007/s10660-022-09543-x
Access Statistics for this article
Electronic Commerce Research is currently edited by James Westland
More articles in Electronic Commerce Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().