EconPapers    
Economics at your fingertips  
 

Product recommendation in internet business: an integrated approach of fuzzy sets and multiple attribute decision making

Niharika Gupta () and Harsh V. Verma ()
Additional contact information
Niharika Gupta: O.P. Jindal Global University
Harsh V. Verma: University of Delhi

Electronic Commerce Research, 2024, vol. 24, issue 4, No 18, 2665-2691

Abstract: Abstract Most of the present day recommender systems recommend the products to the buyers based on their personalized preferences and product information. However, these systems lack the ability to recognize and incorporate buyer’s cognitive and emotional characteristics. With an aim to address these limitations, the present study proposes a new methodology for online product recommendation based on the concepts of fuzzy sets. The proposed methodology takes into account multiple attributes of the products which are non-commensurable, conflicting and fuzzy in nature and recommends the most suitable product to the buyer on the basis of her/his desire on attribute satisfactions. The novelty of the methodology lies in its ability to derive and assimilate buyer’s cognitive characteristics such as tranquillity (anxiety), and attitudinal flexibility in the recommendation process as they are vital in choosing the right product as per buyer desire. The methodology specifically uses Maximal Entropy Ordered Weighted Averaging (MEOWA) operator to gather maximum information about the buyer while objectively deriving the parametric value β. Additionally, the methodology recognizes the buyers’ relative product preferences through a reorder vector which is subsequently used as indices for attribute aggregation using Induced Ordered Weighted Averaging (IOWA) operator. An algorithm Prod_Ranking() is written in our paper and implemented in “Python” to verify the robustness of our procedure. A numerical example of a car-purchasing problem is also illustrated to highlight the procedure developed. At the end, the proposed methodology is compared with other similar works and its advantages are well established.

Keywords: Product recommendation; Fuzzy sets; Tranquillity; Multiple attribute decision making; MEOWA; IOWA (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10660-022-09644-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:elcore:v:24:y:2024:i:4:d:10.1007_s10660-022-09644-7

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10660

DOI: 10.1007/s10660-022-09644-7

Access Statistics for this article

Electronic Commerce Research is currently edited by James Westland

More articles in Electronic Commerce Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:elcore:v:24:y:2024:i:4:d:10.1007_s10660-022-09644-7