Joint Temporal Point Pattern Models for Proximate Species Occurrence in a Fixed Area Using Camera Trap Data
Erin M. Schliep (),
Alan E. Gelfand,
James S. Clark and
Roland Kays
Additional contact information
Erin M. Schliep: University of Missouri
Alan E. Gelfand: Duke University
James S. Clark: Duke University
Roland Kays: North Carolina Museum of Natural Sciences
Journal of Agricultural, Biological and Environmental Statistics, 2018, vol. 23, issue 3, No 2, 334-357
Abstract:
Abstract The distinction between an overlap in species daily activity patterns and proximate co-occurrence of species for a location and time due to behavioral attraction or avoidance is critical when addressing the question of species co-occurrence. We use data from a dense grid of camera traps in a forest in central North Carolina to inform about proximate co-occurrence. Camera trigger times are recorded when animals pass in front of the camera’s field of vision. We view the data as a point pattern over time for each species and model the intensities driving these patterns. These species-specific intensities are modeled jointly in linear time to preserve the notion of co-occurrence. We show that a multivariate log-Gaussian Cox process incorporating both circular and linear time provides a preferred choice for modeling occurrence of forest mammals based on daily activity rhythms. Model inference is obtained under a hierarchical Bayesian framework with an efficient Markov chain Monte Carlo sampling algorithm. After model fitting, we account for imperfect detection of individuals by the camera traps by incorporating species-specific detection probabilities that adjust estimates of occurrence and co-occurrence. We obtain rich inference including assessment of the probability of presence of one species in a particular time interval given presence of another species in the same or adjacent interval, enabling probabilities of proximate co-occurrence. Our results describe the ecology and interactions of four common mammals within this suburban forest including their daily rhythms, responses to temperature and rainfall, and effects of the presence of predator species. Supplementary materials accompanying this paper appear online.
Keywords: Circular time; Fourier series representation; Hierarchical model; Linear time; Multivariate log-Gaussian Cox process; Nonhomogeneous Poisson process (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13253-018-0327-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:23:y:2018:i:3:d:10.1007_s13253-018-0327-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253
DOI: 10.1007/s13253-018-0327-8
Access Statistics for this article
Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland
More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().