Insights of Global Sensitivity Analysis in Biological Models with Dependent Parameters
Julien Sainte-Marie () and
Paul-Henry Cournède ()
Additional contact information
Julien Sainte-Marie: University of Paris-Saclay
Paul-Henry Cournède: University of Paris-Saclay
Journal of Agricultural, Biological and Environmental Statistics, 2019, vol. 24, issue 1, No 5, 92-111
Abstract:
Abstract Global sensitivity analysis (GSA) has become an important tool in the modeling process of biological phenomenon to determine how the uncertainty of model inputs influences the model response. Usually, GSA methods assume the independence of input distributions and several heuristics for model design were defined to improve models’ design and parametrization (Cariboni et al. in Ecol Model, 203(1–2):167–182, 2007). However, recent developments of GSA with dependent inputs suggest reconsidering them from another perspective. In particular, Sobol’s indices were generalized to dependent inputs by explicitly dissociating structural and correlation influence on model outputs (Li et al. in J Phys Chem A, 114(19):6022–6032, 2010). This study considers the prey–predator model, Lotka–Volterra, and the individual plant growth model, Sunflo, to illustrate these new indices and aims to confront them to usual heuristics. The introduction of parameters’ dependence was managed with copulas’ theory, and generalized Sobol’s indices were estimated with the hierarchically orthogonal Gram–Schmidt procedure (Chastaing et al. in J Stat Comput Simul, 85(7):1306–1333, 2015). Strong changes were observed due to the introduction of parameters’ dependence, but classical heuristics remain consistent in the generalized framework. Although additional studies are essential to define more precisely these new heuristics, generalized Sobol’s indices are a promising statistical tool for deepening the understanding of biological model behavior. Supplementary materials accompanying this paper appear online.
Keywords: Global sensitivity analysis; Dependent variables; Copulas theory and estimation; Generalized Sobol indices; Ecological models; Functional structural plant models (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13253-018-00343-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:24:y:2019:i:1:d:10.1007_s13253-018-00343-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253
DOI: 10.1007/s13253-018-00343-1
Access Statistics for this article
Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland
More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().