EconPapers    
Economics at your fingertips  
 

Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture

Sierra Pugh (), Matthew J. Heaton, Jeff Svedin and Neil Hansen
Additional contact information
Sierra Pugh: Brigham Young University
Matthew J. Heaton: Brigham Young University
Jeff Svedin: Brigham Young University
Neil Hansen: Brigham Young University

Journal of Agricultural, Biological and Environmental Statistics, 2019, vol. 24, issue 4, No 5, 634-650

Abstract: Abstract Irrigation is responsible for 80–90% of freshwater consumption in the USA. However, excess water demand, drought, declining groundwater levels, and water quality degradation all threaten future water supplies. In an effort to better understand how to efficiently use water resources, this analysis seeks to quantify the effect of soil water at various depths on the eventual crop yield at the end of a season as a lagged effect of space and time. As a novel modeling contribution, we propose a multiple spatiotemporal lagged model for crop yield to identify critical water times and patterns that can increase the crop yield per drop of water used. Because the crop yield data consist of nearly 20,000 observations, we propose the use of a nearest neighbor Gaussian process to facilitate computation. In applying the model to soil water and yield in Grace, Idaho, for the 2016 season, results indicate that soil moisture in the 0–0.3 m depth of soil was most correlated with crop yield earlier in the season (primarily during May and June), while the soil moisture at the 0.3–1.2 m depth was more correlated with crop yield later in the season around mid-June to mid-July. These results are specific to a crop of winter wheat under center-pivot irrigation, but the model could be used to understand relationships between water and yield for other crops and irrigation systems. Supplementary materials accompanying this paper appear online.

Keywords: Distributed lag; Natural resources; Gaussian process; Bayesian (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s13253-019-00365-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:24:y:2019:i:4:d:10.1007_s13253-019-00365-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253

DOI: 10.1007/s13253-019-00365-3

Access Statistics for this article

Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland

More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jagbes:v:24:y:2019:i:4:d:10.1007_s13253-019-00365-3