EconPapers    
Economics at your fingertips  
 

Efficient Modelling of Presence-Only Species Data via Local Background Sampling

Jeffrey Daniel (), Julie Horrocks and Gary J. Umphrey
Additional contact information
Jeffrey Daniel: University of Guelph
Julie Horrocks: University of Guelph
Gary J. Umphrey: University of Guelph

Journal of Agricultural, Biological and Environmental Statistics, 2020, vol. 25, issue 1, No 6, 90-111

Abstract: Abstract In species distribution modelling, records of species presence are often modelled as a realization of a spatial point process whose intensity is a function of environmental covariates. One way to fit a spatial point process model is to apply logistic regression to an artificial case–control sample consisting of the observed presence records combined with a simulated pattern of background points, usually a uniform random sample from within the study’s spatial domain. In this paper we propose local background sampling as an alternative to uniform background sampling when using logistic regression to fit spatial point process models to data. Our method is similar to the local case–control sampling procedure of Fithian and Hastie (Ann Appl Stat 42:1693–1724, 2014), but differs in that background points are sampled with probability proportional to an initial intensity estimate based on a pilot point process model. We compare local background sampling with uniform background sampling in a simulation study and in an example modelling the distributions of bumble bees (genus Bombus) in Ontario, Canada. Our results show local background sampling to be more efficient than uniform background sampling in all simulated settings and across all species analysed. Supplementary materials accompanying this paper appear online.

Keywords: Case–control sampling; Logistic regression; Spatial point processes; Species distribution modelling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s13253-019-00380-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:25:y:2020:i:1:d:10.1007_s13253-019-00380-4

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253

DOI: 10.1007/s13253-019-00380-4

Access Statistics for this article

Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland

More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jagbes:v:25:y:2020:i:1:d:10.1007_s13253-019-00380-4