Projecting Flood-Inducing Precipitation with a Bayesian Analogue Model
Gregory P. Bopp (),
Benjamin A. Shaby (),
Chris E. Forest () and
Alfonso Mejía ()
Additional contact information
Gregory P. Bopp: Pennsylvania State University
Benjamin A. Shaby: Colorado State University
Chris E. Forest: Pennsylvania State University
Alfonso Mejía: Pennsylvania State University
Journal of Agricultural, Biological and Environmental Statistics, 2020, vol. 25, issue 2, No 6, 229-249
Abstract:
Abstract The hazard of pluvial flooding is largely influenced by the spatial and temporal dependence characteristics of precipitation. When extreme precipitation possesses strong spatial dependence, the risk of flooding is amplified due to catchment factors such as topography that cause runoff accumulation. Temporal dependence can also increase flood risk as storm water drainage systems operating at capacity can be overwhelmed by heavy precipitation occurring over multiple days. While transformed Gaussian processes are common choices for modeling precipitation, their weak tail dependence may lead to underestimation of flood risk. Extreme value models such as the generalized Pareto processes for threshold exceedances and max-stable models are attractive alternatives, but are difficult to fit when the number of observation sites is large, and are of little use for modeling the bulk of the distribution, which may also be of interest to water management planners. While the atmospheric dynamics governing precipitation are complex and difficult to fully incorporate into a parsimonious statistical model, non-mechanistic analogue methods that approximate those dynamics have proven to be promising approaches to capturing the temporal dependence of precipitation. In this paper, we present a Bayesian analogue method that leverages large, synoptic-scale atmospheric patterns to make precipitation forecasts. Changing spatial dependence across varying intensities is modeled as a mixture of spatial Student-t processes that can accommodate both strong and weak tail dependence. The proposed model demonstrates improved performance at capturing the distribution of extreme precipitation over Community Atmosphere Model (CAM) 5.2 forecasts. Supplementary materials accompanying this paper appear online.
Keywords: Dynamical system; Extreme value analysis; Stochastic weather generator; Student-t mixture (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13253-020-00391-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:25:y:2020:i:2:d:10.1007_s13253-020-00391-6
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253
DOI: 10.1007/s13253-020-00391-6
Access Statistics for this article
Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland
More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().