Hierarchical Modeling of Structural Coefficients for Heterogeneous Networks with an Application to Animal Production Systems
K. Chitakasempornkul,
G. J. M. Rosa,
A. Jager and
N. M. Bello ()
Additional contact information
K. Chitakasempornkul: Kansas State University
G. J. M. Rosa: University of Wisconsin-Madison
A. Jager: Kansas State University
N. M. Bello: Kansas State University
Journal of Agricultural, Biological and Environmental Statistics, 2020, vol. 25, issue 4, No 9, 22 pages
Abstract:
Abstract Understanding the interconnections between performance outcomes in a system is increasingly important for integrated management. Structural equation models (SEMs) are a type of multiple-variable modeling strategy that allows investigation of directionality in the association between outcome variables, thereby providing insight into their interconnections as putative causal links defining a functional network. A key assumption underlying SEMs is that of a homogeneous network structure, whereby the structural coefficients defining functional links are assumed homogeneous and impervious to environmental conditions or management factors. This assumption seems questionable as systems are regularly subjected to explicit interventions to optimize the necessary trade-offs between outcomes. Using a Bayesian approach, we propose methodological extensions to hierarchical SEMs that accommodate structural heterogeneity by explicitly specifying structural coefficients as functions of systematic and non-systematic sources of variation. We validate the inferential properties of our proposed approach using a simulation study and show that networks can be consistently identified as homogeneous or heterogeneous. We apply the proposed methodological extensions to a dataset from a designed experiment in swine production consisting of six interrelated reproductive performance outcomes to explore physiological links that differed by parity, while accounting for data architecture due to experimental design. Overall, our results indicate that explicit hierarchical SEM-based modeling of heterogeneous functional networks can be used to advance understanding of complex systems in animal production agriculture. Supplementary materials accompanying this paper appear online.
Keywords: Animal production systems; Hierarchical Bayesian; Heterogeneous structural coefficients; Structural equation models (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13253-020-00389-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:25:y:2020:i:4:d:10.1007_s13253-020-00389-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253
DOI: 10.1007/s13253-020-00389-0
Access Statistics for this article
Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland
More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().