Vector Autoregressive Models with Spatially Structured Coefficients for Time Series on a Spatial Grid
Yuan Yan (),
Hsin-Cheng Huang () and
Marc G. Genton ()
Additional contact information
Yuan Yan: Dalhousie University
Hsin-Cheng Huang: Institute of Statistical Science Academia Sinica
Marc G. Genton: Statistics Program, King Abdullah University of Science and Technology (KAUST)
Journal of Agricultural, Biological and Environmental Statistics, 2021, vol. 26, issue 3, No 4, 387-408
Abstract:
Abstract Motivated by the need to analyze readily available data collected in space and time, especially in environmental sciences, we propose a parsimonious spatiotemporal model for time series data on a spatial grid. In essence, our model is a vector autoregressive model that utilizes the spatial structure to achieve parsimony of autoregressive matrices at two levels. The first level ensures the sparsity of the autoregressive matrices using a lagged-neighborhood scheme. The second level performs a spatial clustering of the nonzero autoregressive coefficients such that within some subregions, nearby locations share the same autoregressive coefficients while across different subregions the coefficients may have distinct values. The model parameters are estimated using the penalized maximum likelihood with an adaptive fused Lasso penalty. The estimation procedure can be tailored to accommodate the need and prior knowledge of a modeler. Performance of the proposed estimation algorithm is examined in a simulation study. Our method gives reliable estimation results that are interpretable and especially useful to identify geographical subregions, within each of which, the time series have similar dynamical behavior with homogeneous autoregressive coefficients. We apply our model to a wind speed time series dataset generated from a climate model over Saudi Arabia to illustrate its power in explaining the dynamics by the spatially structured coefficients. Moreover, the estimated model can be useful for building stochastic weather generators as an approximation of the computationally expensive climate model.
Keywords: Adaptive fused Lasso; Coefficients homogeneity; Penalized maximum likelihood; Regularization; Spatial clusters; Spatiotemporal model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13253-021-00444-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:26:y:2021:i:3:d:10.1007_s13253-021-00444-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253
DOI: 10.1007/s13253-021-00444-4
Access Statistics for this article
Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland
More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().