EconPapers    
Economics at your fingertips  
 

Bayesian Estimation for the GreenLab Plant Growth Model with Deterministic Organogenesis

D. Logothetis (), S. Malefaki (), S. Trevezas () and P.-H. Cournède
Additional contact information
D. Logothetis: National and Kapodistrian University of Athens
S. Malefaki: University of Patras
S. Trevezas: National and Kapodistrian University of Athens
P.-H. Cournède: CentraleSupéle, MAS

Journal of Agricultural, Biological and Environmental Statistics, 2022, vol. 27, issue 1, No 5, 63-87

Abstract: Abstract Plant growth modeling has attracted a lot of attention due to its potential applications. Many scientific disciplines are involved, and a lot of research effort and intensive computer methods were needed to understand better the complex mechanisms underlying plant evolution. Among the numerous challenges, one can cite mathematical modeling, parameterization, estimation and prediction. One of the most promising models that have been proposed in the literature is the GreenLab functional–structural plant growth model. In this study, we focus only on one of its versions, named GreenLab-1, particularly adapted to a certain class of plants with known organogenesis, such as sugar beet, maize, rapeseed and other crop plants. The parameters of the model are related to plant functioning, and the vector of observations consists of organ masses measured only once at a given observation time. Previous efforts for parameter estimation in GreenLab-1 include Kalman-type filters, stochastic variants of EM and/or ECM algorithms, and hybrid sequential importance sampling algorithms with Bayesian estimation only for the functional parameters of the model. In this paper, the first purely Bayesian approach for parameter estimation of the GreenLab-1 model is proposed. This approach has much more flexibility in handling complex structures, thus providing a useful tool for analyzing such types of models. In order to sample from the posterior distribution an MCMC algorithm is used and its implementation issues are also discussed. The performance of this method is illustrated on a simulated and a real dataset from the sugar beet plant, and a comparison is made with the MLE approach.

Keywords: Plant growth model; Crop plants; Bayesian approach; MCMC algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13253-021-00468-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:27:y:2022:i:1:d:10.1007_s13253-021-00468-w

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253

DOI: 10.1007/s13253-021-00468-w

Access Statistics for this article

Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland

More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jagbes:v:27:y:2022:i:1:d:10.1007_s13253-021-00468-w