EconPapers    
Economics at your fingertips  
 

Efficient Discretization of Movement Kernels for Spatiotemporal Capture–Recapture

M. G. Efford ()
Additional contact information
M. G. Efford: University of Otago

Journal of Agricultural, Biological and Environmental Statistics, 2022, vol. 27, issue 4, No 5, 651 pages

Abstract: Abstract Spatially explicit capture–recapture (SECR) models treat detection probability as a function of the distance between each animal and its notional activity centre. Open-population variants of these models (open SECR) are increasingly used to estimate the vital rates (survival and recruitment) of spatial populations subject to turnover between sampling times. If activity centres also move between sampling times then modelling the movement can reduce bias in estimates of vital rates. The usual movement model in open SECR is a random walk with step length governed by a probability kernel. Space is discretized in open SECR for computational convenience, and in some implementations this includes truncation of the probability kernel. Computations for the movement submodel are nevertheless very time-consuming owing to the repeated convolution steps and the need to manage boundary effects. A novel ‘sparse’ discretized kernel is proposed that greatly reduces fitting time. The sparse kernel was tested by simulation and applied to two datasets. Differences between models fitted using the sparse and full kernels were minor and unlikely to matter in practice. The sparse kernel extends the practical limits of the movement modelling in open SECR to greater dispersal distances and greater spatial resolution. Supplementary materials accompanying this paper appear online.

Keywords: Survival estimation; Activity centres; Open population; Random walk; Spatial capture–recapture; SECR (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13253-022-00503-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:27:y:2022:i:4:d:10.1007_s13253-022-00503-4

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253

DOI: 10.1007/s13253-022-00503-4

Access Statistics for this article

Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland

More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jagbes:v:27:y:2022:i:4:d:10.1007_s13253-022-00503-4