Comparing Optimization Algorithms for Item Selection in Mokken Scale Analysis
J. Straat (),
L. Ark and
Klaas Sijtsma
Journal of Classification, 2013, vol. 30, issue 1, 75-99
Abstract:
Mokken scale analysis uses an automated bottom-up stepwise item selection procedure that suffers from two problems. First, when selected during the procedure items satisfy the scaling conditions but they may fail to do so after the scale has been completed. Second, the procedure is approximate and thus may not produce the optimal item partitioning. This study investigates a variation on Mokken’s item selection procedure, which alleviates the first problem, and proposes a genetic algorithm, which alleviates both problems. The genetic algorithm is an approximation to checking all possible partitionings. A simulation study shows that the genetic algorithm leads to better scaling results than the other two procedures. Copyright Springer Science+Business Media New York 2013
Keywords: Item selection; Genetic algorithm; Mokken scaling; Test construction (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00357-013-9122-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:30:y:2013:i:1:p:75-99
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-013-9122-y
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().