Using Neural Network Analysis to Define Methods of DINA Model Estimation for Small Sample Sizes
Zhan Shu (),
Robert Henson and
John Willse
Journal of Classification, 2013, vol. 30, issue 2, 173-194
Abstract:
The DINA model is a commonly used model for obtaining diagnostic information. Like many other Diagnostic Classification Models (DCMs), it can require a large sample size to obtain reliable item and examinee parameter estimation. Neural Network (NN) analysis is a classification method that uses a training dataset for calibration. As a result, if this training dataset is determined theoretically, as was the case in Gierl’s attribute hierarchical method (AHM), the NN analysis does not have any sample size requirements. However, a NN approach does not provide traditional item parameters of a DCM or allow for item responses to influence test calibration. In this paper, the NN approach will be implemented for the DINA model estimation to explore its effectiveness as a classification method beyond its use in AHM. The accuracy of the NN approach across different sample sizes, item quality and Q-matrix complexity is described in the DINA model context. Then, a Markov Chain Monte Carlo (MCMC) estimation algorithm and Joint Maximum Likelihood Estimation is used to extend the NN approach so that item parameters associated with the DINA model are obtained while allowing examinee responses to influence the test calibration. The results derived by the NN, the combination of MCMC and NN (NN MCMC) and the combination of JMLE and NN are compared with that of the well-established Hierarchical MCMC procedure and JMLE with a uniform prior on the attribute profile to illustrate their strength and weakness. Copyright Springer Science+Business Media New York 2013
Keywords: Neural network; Diagnostic Classification Model; MCMC (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00357-013-9134-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:30:y:2013:i:2:p:173-194
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-013-9134-7
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().