EconPapers    
Economics at your fingertips  
 

Measuring the Reliability of Diagnostic Classification Model Examinee Estimates

Jonathan Templin () and Laine Bradshaw

Journal of Classification, 2013, vol. 30, issue 2, 275 pages

Abstract: Over the past decade, diagnostic classification models (DCMs) have become an active area of psychometric research. Despite their use, the reliability of examinee estimates in DCM applications has seldom been reported. In this paper, a reliability measure for the categorical latent variables of DCMs is defined. Using theory-and simulation-based results, we show how DCMs uniformly provide greater examinee estimate reliability than IRT models for tests of the same length, a result that is a consequence of the smaller range of latent variable values examinee estimates can take in DCMs. We demonstrate this result by comparing DCM and IRT reliability for a series of models estimated with data from an end-of-grade test, culminating with a discussion of how DCMs can be used to change the character of large scale testing, either by shortening tests that measure examinees unidimensionally or by providing more reliable multidimensional measurement for tests of the same length. Copyright Springer Science+Business Media New York 2013

Keywords: Diagnostic classification models; Cognitive diagnosis; Reliability; Classification; Psychometrics (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00357-013-9129-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:30:y:2013:i:2:p:251-275

Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2

DOI: 10.1007/s00357-013-9129-4

Access Statistics for this article

Journal of Classification is currently edited by Douglas Steinley

More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jclass:v:30:y:2013:i:2:p:251-275