TOBAE: A Density-based Agglomerative Clustering Algorithm
Shehzad Khalid () and
Shahid Razzaq
Journal of Classification, 2015, vol. 32, issue 2, 267 pages
Abstract:
This paper presents a novel density based agglomerative clustering algorithm named TOBAE which is a parameter-less algorithm and automatically filters noise. It finds the appropriate number of clusters while giving a competitive running time. TOBAE works by tracking the cumulative density distribution of the data points on a grid and only requires the original data set as input. The clustering problem is solved by automatically finding the optimal density threshold for the clusters. It is applicable to any N-dimensional data set which makes it highly relevant for real world scenarios. The algorithm outperforms state of the art clustering algorithms by the additional feature of automatic noise filtration around clusters. The concept behind the algorithm is explained using the analogy of puddles (’tobae’), which the algorithm is inspired from. This paper provides a detailed algorithm for TOBAE along with the complexity analysis for both time and space. We show experimental results against known data sets and show how TOBAE competes with the best algorithms in the field while providing its own set of advantages. Copyright Classification Society of North America 2015
Keywords: Clustering; Agglomerative; Density distribution; Automatic; Noise removal; Non-parametric; Filtering; Terrain; Water puddles; Density threshold. (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00357-015-9166-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:32:y:2015:i:2:p:241-267
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-015-9166-2
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().