Functional Sufficient Dimension Reduction for Functional Data Classification
Guochang Wang and
Xinyuan Song ()
Additional contact information
Guochang Wang: Jinan University
Xinyuan Song: The Chinese University of Hong Kong
Journal of Classification, 2018, vol. 35, issue 2, No 4, 250-272
Abstract:
Abstract We consider two novel functional classification methods for binary response and functional predictor. We extend the most popular functional sufficient dimension reduction methods such as functional sliced inverse regression (FSIR) and functional sliced average variance estimation (FSAVE) by introducing a regularized estimation procedure and incorporating the localized information of the functional predictor in the analysis. Compared to the existing FSIR and FSAVE, the proposed methods are appealing because they are capable of estimating more than one effective dimension reduction direction, whereas FSIR detects only one such direction and FSAVE produces inefficient estimation in the case of binary response. Moreover, our methods make use of the localized information of the functional predictor, thereby more efficiently capturing the nonlinear relation between the binary response and the functional predictor. Furthermore, the proposed methods can be extended to incorporate the ancillary unlabeled data in semi-supervised learning. The empirical performance and the applications of the proposed methods are demonstrated by simulation studies and real applications.
Keywords: Classification; Functional data; Localization; Sufficient dimension reduction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s00357-018-9256-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:35:y:2018:i:2:d:10.1007_s00357-018-9256-z
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-018-9256-z
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().