Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic
Beibei Zhang and
Rong Chen ()
Additional contact information
Beibei Zhang: Capital University of Economics and Business
Rong Chen: Rutgers University
Journal of Classification, 2018, vol. 35, issue 3, No 2, 394-421
Abstract:
Abstract Time series clustering is to assign a set of time series into groups that share certain similarity. It has become an attractive analytic tool as many applications require such classifications. Clustering may also result in more accurate parameter estimates when a group of time series are assumed to share common models and parameters, especially for short panel time series. Many existing time series clustering methods are based on the assumption that the time series are linear. However, linearity assumptions often fail to hold. In this paper we consider the problem of clustering nonlinear time series. We propose the use of a two dimensional Kolmogorov-Smirnov statistic as a distance measure of two time series by measuring the affinity of nonlinear serial dependence structures. It is nonparametric in nature hence no model assumption are needed. The approach is illustrated with simulation studies as well as real data examples.
Keywords: Cross validation; Dissimilarity measure; Hierarchical clustering; Generalized Ward’s linkage (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s00357-018-9271-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:35:y:2018:i:3:d:10.1007_s00357-018-9271-0
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-018-9271-0
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().