Clique-Based Method for Social Network Clustering
Guang Ouyang (),
Dipak K. Dey () and
Panpan Zhang ()
Additional contact information
Guang Ouyang: Google Inc.
Dipak K. Dey: University of Connecitcut
Panpan Zhang: University of Connecitcut
Journal of Classification, 2020, vol. 37, issue 1, No 15, 254-274
Abstract:
Abstract In this article, we develop a clique-based method for social network clustering. We introduce a new index to evaluate the quality of clustering results, and propose an efficient algorithm based on recursive bipartition to maximize an objective function of the proposed index. The optimization problem is NP-hard, so we approximate the semi-optimal solution via an implicitly restarted Lanczos method. One of the advantages of our algorithm is that the proposed index of each community in the clustering result is guaranteed to be higher than some predetermined threshold, p, which is completely controlled by users. We also account for the situation that p is unknown. A statistical procedure of controlling both under-clustering and over-clustering errors simultaneously is carried out to select localized threshold for each subnetwork, such that the community detection accuracy is optimized. Accordingly, we propose a localized clustering algorithm based on binary tree structure. Finally, we exploit the stochastic blockmodels to conduct simulation studies and demonstrate the accuracy and efficiency of our algorithms, both numerically and graphically.
Keywords: Clique-score index; Localized clustering algorithm; Modularity; Social network; Spectral analysis; Stochastic blockmodel (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00357-019-9310-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:37:y:2020:i:1:d:10.1007_s00357-019-9310-5
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-019-9310-5
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().