EconPapers    
Economics at your fingertips  
 

Proximity Curves for Potential-Based Clustering

Attila Csenki (), Daniel Neagu (), Denis Torgunov () and Natasha Micic ()
Additional contact information
Attila Csenki: University of Bradford
Daniel Neagu: University of Bradford
Denis Torgunov: University of Bradford
Natasha Micic: University of Bradford

Journal of Classification, 2020, vol. 37, issue 3, No 9, 695 pages

Abstract: Abstract The concept of proximity curve and a new algorithm are proposed for obtaining clusters in a finite set of data points in the finite dimensional Euclidean space. Each point is endowed with a potential constructed by means of a multi-dimensional Cauchy density, contributing to an overall anisotropic potential function. Guided by the steepest descent algorithm, the data points are successively visited and removed one by one, and at each stage the overall potential is updated and the magnitude of its local gradient is calculated. The result is a finite sequence of tuples, the proximity curve, whose pattern is analysed to give rise to a deterministic clustering. The finite set of all such proximity curves in conjunction with a simulation study of their distribution results in a probabilistic clustering represented by a distribution on the set of dendrograms. A two-dimensional synthetic data set is used to illustrate the proposed potential-based clustering idea. It is shown that the results achieved are plausible since both the ‘geographic distribution’ of data points as well as the ‘topographic features’ imposed by the potential function are well reflected in the suggested clustering. Experiments using the Iris data set are conducted for validation purposes on classification and clustering benchmark data. The results are consistent with the proposed theoretical framework and data properties, and open new approaches and applications to consider data processing from different perspectives and interpret data attributes contribution to patterns.

Keywords: Clustering; Physical model; Anisotropic potential; Cauchy class of distributions; Steepest descent; Probabilistic dendrogram; Proximity curve; Iris data set (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00357-019-09348-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:37:y:2020:i:3:d:10.1007_s00357-019-09348-y

Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2

DOI: 10.1007/s00357-019-09348-y

Access Statistics for this article

Journal of Classification is currently edited by Douglas Steinley

More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jclass:v:37:y:2020:i:3:d:10.1007_s00357-019-09348-y