Consumer Segmentation Based on Use Patterns
Juan José Fernández-Durán () and
María Mercedes Gregorio-Domínguez ()
Additional contact information
Juan José Fernández-Durán: ITAM
María Mercedes Gregorio-Domínguez: ITAM
Journal of Classification, 2021, vol. 38, issue 1, No 6, 72-88
Abstract:
Abstract Recent technological advances have enabled the easy collection of consumer behavior data in real time. Typically, these data contain the time at which a consumer engages in a particular activity such as entering a store, buying a product, or making a call. The occurrence time of certain events must be analyzed as circular random variables, with 24:00 corresponding to 0:00. To effectively implement a marketing strategy (pricing, promotion, or product design), consumers should be segmented into homogeneous groups. This paper proposes a methodology based on circular statistical models from which we construct a clustering algorithm based on the use patterns of consumers. In particular, we model temporal patterns as circular distributions based on nonnegative trigonometric sums (NNTSs). Consumers are clustered into homogeneous groups based on their vectors of parameter estimates by using a spherical k-means clustering algorithm. For this purpose, we define the parameter space of NNTS models as a hypersphere. The methodology is applied to three real datasets comprising the times at which individuals send short-service messages and start voice calls and the check-in times of the users of a mobile application Foursquare.
Keywords: Real-time marketing; Circular data; Spherical k-means clustering; Market segmentation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00357-019-09360-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:38:y:2021:i:1:d:10.1007_s00357-019-09360-2
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-019-09360-2
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().