EconPapers    
Economics at your fingertips  
 

Matrix Normal Cluster-Weighted Models

Salvatore D. Tomarchio (), Paul D. McNicholas and Antonio Punzo
Additional contact information
Salvatore D. Tomarchio: University of Catania
Paul D. McNicholas: McMaster University
Antonio Punzo: University of Catania

Journal of Classification, 2021, vol. 38, issue 3, No 8, 556-575

Abstract: Abstract Finite mixtures of regressions with fixed covariates are a commonly used model-based clustering methodology to deal with regression data. However, they assume assignment independence, i.e., the allocation of data points to the clusters is made independently of the distribution of the covariates. To take into account the latter aspect, finite mixtures of regressions with random covariates, also known as cluster-weighted models (CWMs), have been proposed in the univariate and multivariate literature. In this paper, the CWM is extended to matrix data, e.g., those data where a set of variables are simultaneously observed at different time points or locations. Specifically, the cluster-specific marginal distribution of the covariates and the cluster-specific conditional distribution of the responses given the covariates are assumed to be matrix normal. Maximum likelihood parameter estimates are derived using an expectation-conditional maximization algorithm. Parameter recovery, classification assessment, and the capability of the Bayesian information criterion to detect the underlying groups are investigated using simulated data. Finally, two real data applications concerning educational indicators and the Italian non-life insurance market are presented.

Keywords: Mixture models; Matrix-variate; Classification; Clustering (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s00357-021-09389-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:38:y:2021:i:3:d:10.1007_s00357-021-09389-2

Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2

DOI: 10.1007/s00357-021-09389-2

Access Statistics for this article

Journal of Classification is currently edited by Douglas Steinley

More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jclass:v:38:y:2021:i:3:d:10.1007_s00357-021-09389-2