Computing Finite Mixture Estimators in the Tails
Marilena Furno
Journal of Classification, 2023, vol. 40, issue 2, No 4, 267-297
Abstract:
Abstract The finite mixtures approach identifies homogeneous groups within the sample. The data are aggregated into classes sharing similar patterns without any prior knowledge or assumption on the clustering. These clusters are characterized by group-specific regression coefficients to account for between groups heterogeneity. Two different approaches have been independently defined in the literature to compute this estimator not only at the conditional mean but also in the tails. One approach allows the grouping to change according to the selected location. The other defines the clusters once and for all at the conditional mean, and then moves the estimation to the tails, focusing on cluster specific estimates and allowing between groups comparison. Here we compare the behavior of both approaches, and in addition we consider a closely related estimator based on expectiles, together with few others more robust, quantile-based estimators. A case study on students’ performance concludes the analysis.
Keywords: Finite mixture models; Quantiles; Expectiles; M-quantiles (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00357-023-09433-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:40:y:2023:i:2:d:10.1007_s00357-023-09433-3
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-023-09433-3
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().