Two Simple but Efficient Algorithms to Recognize Robinson Dissimilarities
M. Carmona (),
V. Chepoi (),
G. Naves () and
P. Préa ()
Additional contact information
M. Carmona: LIS, Aix-Marseille Université, CNRS and Université de Toulon
V. Chepoi: LIS, Aix-Marseille Université, CNRS and Université de Toulon
G. Naves: LIS, Aix-Marseille Université, CNRS and Université de Toulon
P. Préa: LIS, Aix-Marseille Université, CNRS and Université de Toulon
Journal of Classification, 2024, vol. 41, issue 3, No 3, 455-479
Abstract:
Abstract A dissimilarity d on a set S of size n is said to be Robinson if its matrix can be symmetrically permuted so that its elements do not decrease when moving away from the main diagonal along any row or column. Equivalently, S admits a total order
Keywords: Robinson dissimilarity; Classification; Seriation; PQ-tree; Partition refinement (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00357-023-09446-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:41:y:2024:i:3:d:10.1007_s00357-023-09446-y
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-023-09446-y
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().