Bounded Rationality, Neural Network and Folk Theorem in Repeated Games with Discounting
Inkoo Cho
Economic Theory, 1994, vol. 4, issue 6, 935-57
Abstract:
The perfect folk theorem (Fudenberg and Maskin, 1986) need not rely on excessively complex strategies. We recover the perfect folk theorem for two person repeated games with discounting through neural networks (Hopfield, 1982) that have finitely many associative units. For any individually rational payoff vector, we need neural networks with at most seven associative units, each of which can handle only elementary calculations such as maximum, minimum or threshold operation. The uniform upper bound of the complexity of equilibrium strategies differentiates this paper from Ben-Porath and Peleg (1987) in which we need to admit ever more complex strategies in order to expand the set of equilibrium outcomes.
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (19)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joecth:v:4:y:1994:i:6:p:935-57
Ordering information: This journal article can be ordered from
http://www.springer. ... eory/journal/199/PS2
Access Statistics for this article
Economic Theory is currently edited by Nichoals Yanneils
More articles in Economic Theory from Springer, Society for the Advancement of Economic Theory (SAET) Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().