Expected utility theory from the frequentist perspective
Tai-Wei Hu ()
Economic Theory, 2013, vol. 53, issue 1, 9-25
Abstract:
We present an axiomatization of expected utility from the frequentist perspective. It starts with a preference relation on the set of infinite sequences with limit relative frequencies. We consider three axioms parallel to the ones for the von Neumann–Morgenstern (vN–M) expected utility theory. Limit relative frequencies correspond to probability values in lotteries in the vN–M theory. This correspondence is used to show that each of our axioms is equivalent to the corresponding vN–M axiom in the sense that the former is an exact translation of the latter. As a result, a representation theorem is established: The preference relation is represented by an average of utilities with weights given by the relative frequencies. Copyright Springer-Verlag 2013
Keywords: Objective probability; Expected utility theory; Frequentist theory of probability; Decision theory; D80; D81 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00199-009-0482-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joecth:v:53:y:2013:i:1:p:9-25
Ordering information: This journal article can be ordered from
http://www.springer. ... eory/journal/199/PS2
DOI: 10.1007/s00199-009-0482-9
Access Statistics for this article
Economic Theory is currently edited by Nichoals Yanneils
More articles in Economic Theory from Springer, Society for the Advancement of Economic Theory (SAET) Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().