A Representation Theorem for Riesz Spaces and Its Applications to Economics
Y A Abramovich,
C D Aliprantis and
William Zame
Economic Theory, 1995, vol. 5, issue 3, 527-35
Abstract:
We show that a Dedekind complete Riesz space which contains a weak unit e and admits a strictly positive order continuous linear functional can be represented as a subspace of the space L(subscript "1") of integrable functions on a probability measure space in such a way that the order ideal generated by e is carried onto L(subscript "infinity"). As a consequence, we obtain a characterization of abstract M-spaces that are isomorphic to concrete L(subscript "infinity")-spaces. Although these results are implicit in the literature on representation of Riesz spaces, they are not available in this form. This research is motivated by, and has applications in, general equilibrium theory in infinite dimensional spaces.
Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (2)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Working Paper: A Representation Theorem for Riesz Spaces and its Applications to Economics (1994) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joecth:v:5:y:1995:i:3:p:527-35
Ordering information: This journal article can be ordered from
http://www.springer. ... eory/journal/199/PS2
Access Statistics for this article
Economic Theory is currently edited by Nichoals Yanneils
More articles in Economic Theory from Springer, Society for the Advancement of Economic Theory (SAET) Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().