Optimal Learning with Costly Adjustment
Mark Feldman and
Michael Spagat
Economic Theory, 1995, vol. 6, issue 3, 439-51
Abstract:
We formulate an infinite-horizon Bayesian learning model in which the planner faces a cost from switching actions that does not approach zero as the size of the change vanishes. We recast the model as a dynamic programming problem which will always have a continuous value function and an optimal policy. We show that the planner's beliefs will converge eventually to some stochastic limit belief which, however, is not necessarily a point mass on the "truth." The planner's actions will also converge, although not necessarily to an optimal action given the truth. A key implication of adjustment costs is that the planner will change her action only finitely many times. We present a simple example illustrating how adjustment costs can lead the planner to settle in the long run on an action that is far away from the optimal action given the "truth" and which yields a reward significantly below that of the optimal action.
Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Journal Article: Optimal learning with costly adjustent (1995)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joecth:v:6:y:1995:i:3:p:439-51
Ordering information: This journal article can be ordered from
http://www.springer. ... eory/journal/199/PS2
Access Statistics for this article
Economic Theory is currently edited by Nichoals Yanneils
More articles in Economic Theory from Springer, Society for the Advancement of Economic Theory (SAET) Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().