EconPapers    
Economics at your fingertips  
 

A lower bound on computational complexity given by revelation mechanisms (*)

Kenneth R. Mount and Stanley Reiter

Economic Theory, 1996, vol. 7, issue 2, 237-266

Abstract: This paper establishes a lower bound on the computational complexity of smooth functions between smooth manifolds. It generalizes one for finite (Boolean) functions obtained (by Arbib and Spira [2]) by counting variables. Instead of a counting procedure, which cannot be used in the infinite case, the dimension of the message space of a certain type of revelation mechanism provides the bound. It also provides an intrinsic measure of the number of variables on which the function depends. This measure also gives a lower bound on computational costs associated with realizing or implementing the function by a decentralized mechanism, or by a game form.

Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (4)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
Journal Article: A Lower Bound on Computational Complexity Given by Revelation Mechanisms (1996)
Working Paper: A Lower Bound on Computational Complexity Given by Revelation Mechanisms (1994) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joecth:v:7:y:1996:i:2:p:237-266

Ordering information: This journal article can be ordered from
http://www.springer. ... eory/journal/199/PS2

Access Statistics for this article

Economic Theory is currently edited by Nichoals Yanneils

More articles in Economic Theory from Springer, Society for the Advancement of Economic Theory (SAET) Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joecth:v:7:y:1996:i:2:p:237-266