WPO, COV and IIA bargaining solutions for non-convex bargaining problems
Hans Peters and
Dries Vermeulen
International Journal of Game Theory, 2012, vol. 41, issue 4, 884 pages
Abstract:
We characterize all n-person multi-valued bargaining solutions, defined on the domain of all finite bargaining problems, and satisfying Weak Pareto Optimality (WPO), Covariance (COV), and Independence of Irrelevant Alternatives (IIA). We show that these solutions are obtained by iteratively maximizing nonsymmetric Nash products and determining the final set of points by so-called LDR decompositions. If, next, we assume the (set-theoretic) Axiom of Determinacy, then this class coincides with the class of iterated Nash bargaining solutions; but if we assume the Axiom of Choice then we are able to construct an additional large set of discontinuous and even nonmeasurable solutions. We show however that none of these nonmeasurable solutions can be defined in terms of set theoretic formulae. We next show that a number of existing results in the literature as well as some new results are implied by our approach. These include a characterization of all WPO, COV and IIA solutions—including single-valued ones—on the domain of all compact bargaining problems, and an extension of a theorem of Birkhoff characterizing translation invariant and homogeneous orderings. Copyright The Author(s) 2012
Keywords: Nash bargaining solutions; Non-convex bargaining problems; C72; D44 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00182-010-0246-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jogath:v:41:y:2012:i:4:p:851-884
Ordering information: This journal article can be ordered from
http://www.springer. ... eory/journal/182/PS2
DOI: 10.1007/s00182-010-0246-6
Access Statistics for this article
International Journal of Game Theory is currently edited by Shmuel Zamir, Vijay Krishna and Bernhard von Stengel
More articles in International Journal of Game Theory from Springer, Game Theory Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().