EconPapers    
Economics at your fingertips  
 

Bounded rationality, strategy simplification, and equilibrium

Hubie Chen ()

International Journal of Game Theory, 2013, vol. 42, issue 3, 593-611

Abstract: It is frequently suggested that predictions made by game theory could be improved by considering computational restrictions when modeling agents. Under the supposition that players in a game may desire to balance maximization of payoff with minimization of strategy complexity, Rubinstein and co-authors studied forms of Nash equilibrium where strategies are maximally simplified in that no strategy can be further simplified without sacrificing payoff. Inspired by this line of work, we introduce a notion of equilibrium whereby strategies are also maximally simplified, but with respect to a simplification procedure that is more careful in that a player will not simplify if the simplification incents other players to deviate. We study such equilibria in two-player machine games in which players choose finite automata that succinctly represent strategies for repeated games; in this context, we present techniques for establishing that an outcome is at equilibrium and present results on the structure of equilibria. Copyright Springer-Verlag 2013

Keywords: Bounded rationality; Automata; Repeated games; Simplification; Strategy complexity (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s00182-011-0293-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jogath:v:42:y:2013:i:3:p:593-611

Ordering information: This journal article can be ordered from
http://www.springer. ... eory/journal/182/PS2

DOI: 10.1007/s00182-011-0293-7

Access Statistics for this article

International Journal of Game Theory is currently edited by Shmuel Zamir, Vijay Krishna and Bernhard von Stengel

More articles in International Journal of Game Theory from Springer, Game Theory Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jogath:v:42:y:2013:i:3:p:593-611