Analysis of stochastic matching markets
Péter Biró and
Gethin Norman ()
International Journal of Game Theory, 2013, vol. 42, issue 4, 1040 pages
Abstract:
Suppose that the agents of a matching market contact each other randomly and form new pairs if is in their interest. Does such a process always converge to a stable matching if one exists? If so, how quickly? Are some stable matchings more likely to be obtained by this process than others? In this paper we are going to provide answers to these and similar questions, posed by economists and computer scientists. In the first part of the paper we give an alternative proof for the theorems by Diamantoudi et al. and Inarra et al., which imply that the corresponding stochastic processes are absorbing Markov chains. The second part of the paper proposes new techniques to analyse the behaviour of matching markets. We introduce the Stable Marriage and Stable Roommates Automaton and show how the probabilistic model checking tool PRISM may be used to predict the outcomes of stochastic interactions between myopic agents. In particular, we demonstrate how one can calculate the probabilities of reaching different matchings in a decentralised market and determine the expected convergence time of the stochastic process concerned. We illustrate the usage of this technique by studying some well-known marriage and roommates instances and randomly generated instances. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Stable matchings; Path to stability; Markov chain; Model checking (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00182-012-0352-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Analysis of Stochastic Matching Markets (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jogath:v:42:y:2013:i:4:p:1021-1040
Ordering information: This journal article can be ordered from
http://www.springer. ... eory/journal/182/PS2
DOI: 10.1007/s00182-012-0352-8
Access Statistics for this article
International Journal of Game Theory is currently edited by Shmuel Zamir, Vijay Krishna and Bernhard von Stengel
More articles in International Journal of Game Theory from Springer, Game Theory Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().