Unit-sphere games
Pingzhong Tang () and
Hanrui Zhang ()
Additional contact information
Pingzhong Tang: Tsinghua University
Hanrui Zhang: Tsinghua University
International Journal of Game Theory, 2017, vol. 46, issue 4, No 4, 957-974
Abstract:
Abstract This paper introduces a class of games, called unit-sphere games, in which strategies are real vectors with unit 2-norms (or, on a unit-sphere). As a result, they should no longer be interpreted as probability distributions over actions, but rather be thought of as allocations of one unit of resource to actions and the payoff effect on each action is proportional to the square root of the amount of resource allocated to that action. The new definition generates a number of interesting consequences. We first characterize the sufficient and necessary condition under which a two-player unit-sphere game has a Nash equilibrium. The characterization reduces solving a unit-sphere game to finding all eigenvalues and eigenvectors of the product matrix of individual payoff matrices. For any unit-sphere game with non-negative payoff matrices, there always exists a unique Nash equilibrium; furthermore, the unique equilibrium is efficiently reachable via Cournot adjustment. In addition, we show that any equilibrium in positive unit-sphere games corresponds to approximate equilibria in the corresponding normal-form games. Analogous but weaker results are obtained in n-player unit-sphere games.
Keywords: Unit-sphere games; Pure Nash equilibrium; Uniqueness of pure Nash equilibrium; Learning in games (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00182-017-0565-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jogath:v:46:y:2017:i:4:d:10.1007_s00182-017-0565-y
Ordering information: This journal article can be ordered from
http://www.springer. ... eory/journal/182/PS2
DOI: 10.1007/s00182-017-0565-y
Access Statistics for this article
International Journal of Game Theory is currently edited by Shmuel Zamir, Vijay Krishna and Bernhard von Stengel
More articles in International Journal of Game Theory from Springer, Game Theory Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().