The Shapley value in positional queueing problems
Changyong Han () and
Youngsub Chun ()
Additional contact information
Changyong Han: Korea SMEs and Startups Institute
Youngsub Chun: Seoul National University
International Journal of Game Theory, 2024, vol. 53, issue 3, No 1, 725-763
Abstract:
Abstract A group of agents are waiting to be served in a facility. Each server in the facility can serve only one agent at a time and agents differ in their cost-types. For this queueing problem, we are interested in finding the order in which to serve agents and the corresponding monetary transfers for the agents. In the standard queueing problem, each agent’s waiting cost is assumed to be constant per unit of time. In this paper, we allow the waiting cost of each agent to depend on the cost-type of each agent and the position assigned to be served. Furthermore, this function is assumed to be supermodular with respect to the cost-type and the position, and non-decreasing with respect to each argument. Our “positional queueing problem” generalizes the queueing problem with multiple parallel servers (Chun and Heo in Int J Econ Theory 4:299–315, 2008) as well as the position allocation problem (Essen and Wooders in J Econ Theory 196:105315, 2021). By applying the Shapley value to the problem, we obtain the optimistic and the pessimistic Shapley rules which are extensions of the minimal (Maniquet in J Econ Theory 109:90–103, 2003) and the maximal (Chun in Math Soc Scie 51:171–181, 2006) transfer rules of the standard queueing problem. We also present axiomatic characterizations of the two rules. The optimistic Shapley rule is the only rule satisfying efficiency and Pareto indifference together with (1) equal treatment of equals and independence of larger cost-types or (2) the identical cost-types lower bound, negative cost-type monotonicity, and last-agent equal responsibility. On the other hand, the pessimistic Shapley rule is the only rule satisfying efficiency and Pareto indifference together with (1) equal treatment of equals and independence of smaller cost-types or (2) the identical cost-types lower bound, positive cost-type monotonicity, and first-agent equal responsibility under constant completion time.
Keywords: Positional queueing problems; Shapley value; Optimistic Shapley rule; Pessimistic Shapley rule; Axiomatic characterizations (search for similar items in EconPapers)
JEL-codes: C71 D71 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00182-024-00901-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jogath:v:53:y:2024:i:3:d:10.1007_s00182-024-00901-7
Ordering information: This journal article can be ordered from
http://www.springer. ... eory/journal/182/PS2
DOI: 10.1007/s00182-024-00901-7
Access Statistics for this article
International Journal of Game Theory is currently edited by Shmuel Zamir, Vijay Krishna and Bernhard von Stengel
More articles in International Journal of Game Theory from Springer, Game Theory Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().