Decision-making in the manufacturing environment using a value-risk graph
L. A. Shah (),
A. Etienne (),
A. Siadat () and
F. Vernadat ()
Additional contact information
L. A. Shah: LUNAM University
A. Etienne: Arts et Métiers ParisTech
A. Siadat: Arts et Métiers ParisTech
F. Vernadat: European Court of Auditors
Journal of Intelligent Manufacturing, 2016, vol. 27, issue 3, No 9, 617-630
Abstract:
Abstract A value-risk based decision-making tool is proposed for performance assessment of manufacturing scenarios. For this purpose, values (i.e. qualitative objective statements) and concerns (i.e. qualitative risk statements) of stakeholders in any given manufacturing scenario are first identified and are made explicit via objective and risk modeling. Next, performance and risk measures are derived from the corresponding objective and risk models to evaluate the scenario under study. After that, upper and lower bounds, and target value is defined for each measure in order to determine goals and constraints for the given scenario. Because of the multidimensionality nature of performance, the identified objectives and risks, and so, their corresponding measures are usually numerous and heterogeneous in nature. These measures are therefore consolidated to obtain a global performance indicator of value and global indicator of risk while keeping in views the inter-criteria influences. Finally, the global indicators are employed to develop minimum acceptable value and maximum acceptable risk for the scenario under study and plotted on the VR-Graph to demarcate zones of “highly desirable”, “feasible”, “and risky” as well as the “unacceptable” one. The global scores of the indicators: (value-risk) pair of the actual scenario is then plotted on the defined VR-Graph to facilitate decision-making by rendering the scenarios’ performance more visible and clearer. The proposed decision-making tool is illustrated with an example from manufacturing setup in the process context but it can be extended to product or systems evaluation.
Keywords: Value management; Risk analysis; Manufacturing processes simulation; Decision support; MACBETH Methodology; Choquet Integral operator (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-014-0895-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:27:y:2016:i:3:d:10.1007_s10845-014-0895-6
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-014-0895-6
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().