Process control based on pattern recognition for routing carbon fiber reinforced polymer
Yasser Shaban (),
Mouhab Meshreki (),
Soumaya Yacout (),
Marek Balazinski () and
Helmi Attia ()
Additional contact information
Yasser Shaban: École Polytechnique
Mouhab Meshreki: National Research Council Canada
Soumaya Yacout: École Polytechnique
Marek Balazinski: École Polytechnique
Helmi Attia: National Research Council Canada
Journal of Intelligent Manufacturing, 2017, vol. 28, issue 1, No 13, 165-179
Abstract:
Abstract Carbon fiber reinforced polymer (CFRP) is an important composite material. It has many applications in aerospace and automotive fields. The little information available about the machining process of this material, specifically when routing process is considered, makes the process control quite difficult. In this paper, we propose a new process control technique and we apply it to the routing process for that important material. The measured machining conditions are used to evaluate the quality and the geometric profile of the machined part. The machining conditions, whether controllable or uncontrollable are used to control part accuracy and its quality. We present a pattern-based machine learning approach in order to detect the characteristic patterns, and use them to control the quality of a machined part at specific range. The approach is called logical analysis of data (LAD). LAD finds the characteristic patterns which lead to conforming products and those that lead to nonconforming products. As an example, LAD is used for online control of a simulated routing process of CFRP. We introduce the LAD technique, we apply it to the high speed routing of woven carbon fiber reinforced epoxy, and we compare the accuracy of LAD to that of an artificial neural network, since the latter is the most known machine learning technique. By using experimental results, we show how LAD is used to control the routing process by tuning autonomously the routing conditions. We conclude with a discussion of the potential use of LAD in manufacturing.
Keywords: Machining; Process control; Logical analysis of data; CFRP; Pattern recognition; Knowledge extraction (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-014-0968-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:28:y:2017:i:1:d:10.1007_s10845-014-0968-6
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-014-0968-6
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().