EconPapers    
Economics at your fingertips  
 

The use of improved TOPSIS method based on experimental design and Chebyshev regression in solving MCDM problems

Peng Wang (), Zhouquan Zhu and Shuai Huang
Additional contact information
Peng Wang: Northwestern Polytechnical University
Zhouquan Zhu: Northwestern Polytechnical University
Shuai Huang: Northwestern Polytechnical University

Journal of Intelligent Manufacturing, 2017, vol. 28, issue 1, No 18, 229-243

Abstract: Abstract Decision makers today are faced with a wide range of alternative options and a large set of conflicting criteria. How to make trade-off between these conflicting attributes and make a scientific decision is always a difficult task. Although a lot of multiple criteria decision making (MCDM) methods are available to deal with selection applications, it’s observed that in most of these methods the ranking results are very sensitive to the changes in the attribute weights. The calculation process is also ineffective when a new alternative is added or removed from the MCDM problem. This paper presents an improved TOPSIS method based on experimental design and Chebyshev orthogonal polynomial regression. A feature of this method is that it employs the experimental design technique to assign the attribute weights and uses Chebyshev regression to build a regression model. This model can help and guide a decision maker to make a reasonable judgment easily. The proposed methodology is particularized through an equipment selection problem in manufacturing environment. Two more illustrative examples are conducted to demonstrate the applicability of the proposed method. In all the cases, the results obtained using the proposed method almost corroborate with those derived by the earlier researchers which proves the validity, capability and potentiality of this method in solving real-life MCDM problems.

Keywords: MCDM; TOPSIS; Experimental design; Chebyshev orthogonal polynomial regression (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-014-0973-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:28:y:2017:i:1:d:10.1007_s10845-014-0973-9

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-014-0973-9

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:28:y:2017:i:1:d:10.1007_s10845-014-0973-9