Bio-signal-based geometric modeling application for physically disabled users
Lan Wu and
Ali Akgunduz ()
Additional contact information
Lan Wu: Concordia University
Ali Akgunduz: Concordia University
Journal of Intelligent Manufacturing, 2017, vol. 28, issue 7, No 12, 1667-1678
Abstract:
Abstract This paper discusses the challenges in achieving bio-signal-based design environments. While the main motivation of this paper was to provide a user interface for physically disabled people to express their artistic natures, a special emphasis is given on graphical user interface design where bio-signals are the single input source. Among three bio-signal sources investigated—electromyography, electrooculography and electroencephalography (EEG)—stimulus-based human–computer interaction design (EEG feature extraction method) is found to be the most promising for achieving design environments to perform complex tasks. In the proposed stimulus-based brain–computer-interaction application, the user communication with a computer is achieved by coupling intended functionalities with stimuli signals on the computer screen. Constant focus on the intended command stimulates the brain. In return, the brain releases a response signals (steady state visual evoked potential). In theory, brain’s response signals and the stimulus signals are identical. Once successfully identified, the presence of a signal pattern that is identical to the one of the alternative stimulus signals (paired with a command in a user interface) indicates the intention of a user. Since each option is associated with a unique signal pattern, multiple options can simultaneously be offered to users. The main challenge of working with stimulus signals is that the response signals are weak and they are buried inside of highly polluted EEG signals that include brain’s natural activities. In this paper, we introduce a signal processing algorithm based on Lorenz systems of differential equations for identifying the source of stimulus signals. Our experiments strongly suggest that bio-signal-based design environments to perform complex tasks, including geometric modeling can be achieved by utilizing stimulus-based signal processing methodology.
Keywords: Brain–computer interface; Geometric design; EEG; Lorenz system; Chaos theory; Support system for physically challenged users; Steady state visual evoked potential (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-016-1208-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:28:y:2017:i:7:d:10.1007_s10845-016-1208-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-016-1208-z
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().