EconPapers    
Economics at your fingertips  
 

Cluster analysis and neural network-based metamodeling of priority rules for dynamic sequencing

A. S. Xanthopoulos () and D. E. Koulouriotis ()
Additional contact information
A. S. Xanthopoulos: Democritus University of Thrace
D. E. Koulouriotis: Democritus University of Thrace

Journal of Intelligent Manufacturing, 2018, vol. 29, issue 1, No 5, 69-91

Abstract: Abstract Most sequencing problems deal with deterministic environments where all information is known in advance. However, in real-world problems multiple sources of uncertainty need to be taken into consideration. To model such a situation, in this article, a dynamic sequencing problem with random arrivals, processing times and due-dates is considered. The examined system is a manufacturing line with multiple job classes and sequence-dependent setups. The performance of the system is measured under the metrics of mean WIP, mean cycle time, mean earliness, mean tardiness, mean absolute lateness, and mean percentage of tardy jobs. Twelve job dispatching rules for solving this problem are considered and evaluated via simulation experiments. A statistically rigorous analysis of the solution approaches is carried out with the use of unsupervised and supervised learning methods. The cluster analysis of the experimental results identified classes of priority rules based on their observed performance. The characteristics of each priority rule class are documented and areas in objective space not covered by existing rules are identified. The functional relationship between sequencing priority rules and performance metrics of the production system was approximated by artificial neural networks. Apart from gaining insight into the mechanics of the sequencing approaches the results of this article can be used (1) as a component for prediction systems of dispatching rule output, (2) as a guideline for building new dispatching heuristic with entirely different characteristics than existing ones, (3) to significantly decrease the length of what-if simulation studies.

Keywords: Dynamic sequencing; Priority rules; Discrete-event simulation; Hierarchical clustering; Artificial neural networks; Job-shop (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-015-1090-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:1:d:10.1007_s10845-015-1090-0

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-015-1090-0

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:29:y:2018:i:1:d:10.1007_s10845-015-1090-0