EconPapers    
Economics at your fingertips  
 

A genetic algorithm for operation sequencing in CAPP using edge selection based encoding strategy

Yuliang Su (), Xuening Chu (), Dongping Chen () and Xiwu Sun ()
Additional contact information
Yuliang Su: Shanghai Jiao Tong University
Xuening Chu: Shanghai Jiao Tong University
Dongping Chen: Shanghai Jiao Tong University
Xiwu Sun: Shanghai Aerospace Equipment Manufacturer

Journal of Intelligent Manufacturing, 2018, vol. 29, issue 2, No 4, 313-332

Abstract: Abstract Operation sequencing in CAPP aims at determining the optimal order of machining operations with minimal machining cost and satisfying all the precedence constraints. The genetic algorithm (GA) is widely used to solve precedence constrained operation sequencing problem (PCOSP) due to its efficiency and parallel processing capability. How to guarantee the precedence constraints is always a hot research topic and there are mainly two classes of methods. The first ones use additional adjustment approaches to repair the infeasible solutions that break precedence constraints. It is unreliable and low efficient. The second ones avoid infeasible solutions in initialization through some encoding approaches such as topological storing based encoding approach, but the premature convergence problem may occur facing some complicated PCOSPs. To solve these problems, an edge selection strategy based GA is proposed. The edge selection based strategy could produce feasible solutions in initialization, and assures that every feasible solution will be generated with acceptable probability so as to improve GA’s converging efficiency. Then the precedence constraints are kept by order crossover. Modified mutation operator is designed to optimize the selection of machine tool, tool access direction and cutting tool for each operation. The experiments illustrate that the proposed algorithm is effective and efficient.

Keywords: Genetic algorithm; Operation sequencing; Edge selection based encoding strategy; CAPP (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-015-1109-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:2:d:10.1007_s10845-015-1109-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-015-1109-6

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:29:y:2018:i:2:d:10.1007_s10845-015-1109-6