Identifying maximum imbalance in datasets for fault diagnosis of gearboxes
Pedro Santos (),
Jesús Maudes () and
Andres Bustillo ()
Additional contact information
Pedro Santos: University of Burgos
Jesús Maudes: University of Burgos
Andres Bustillo: University of Burgos
Journal of Intelligent Manufacturing, 2018, vol. 29, issue 2, No 5, 333-351
Abstract:
Abstract Research into fault diagnosis in rotating machinery with a wide range of variable loads and speeds, such as the gearboxes of wind turbines, is of great industrial interest. Although appropriate sensors have been identified, an intelligent system that classifies machine states remains an open issue, due to a paucity of datasets with sufficient fault cases. Many of the proposed solutions have been tested on balanced datasets, containing roughly equal percentages of wind-turbine failure instances and instances of correct performance. In practice, however, it is not possible to obtain balanced datasets under real operating conditions. Our objective is to identify the most suitable classification technique that will depend least of all on the level of imbalance in the dataset. We start by analysing different metrics for the comparison of classification techniques on imbalanced datasets. Our results pointed to the Unweighted Macro Average of the F-measure, which we consider the most suitable metric for this diagnosis. Then, an extensive set of classification techniques was tested on datasets with varying levels of imbalance. Our conclusion is that a Rotation Forest ensemble of C4.4 decision trees, modifying the training phase of the classifier with a cost-sensitive approach, is the most suitable prediction model for this industrial task. It maintained its good performance even when the minority classes rate was as low as 6.5 %, while the majority of the other classifiers were more sensitive to the level of database imbalance and failed standard performance objectives, when the minority classes rate was lower than 10.5 %.
Keywords: Fault diagnosis; Multi-class imbalance; Wind turbines; Ensembles; Metrics; Gearbox (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-015-1110-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:2:d:10.1007_s10845-015-1110-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-015-1110-0
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().