A Genetic Algorithm applied to pick sequencing for billing
Anderson Rogério Faia Pinto (),
Antonio Fernando Crepaldi () and
Marcelo Nagano ()
Additional contact information
Anderson Rogério Faia Pinto: University of São Paulo
Antonio Fernando Crepaldi: São Paulo State University
Journal of Intelligent Manufacturing, 2018, vol. 29, issue 2, No 9, 405-422
Abstract:
Abstract This article addresses the use of Holland’s Genetic Algorithms (GAs) (Holland in Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, MI, 1975) in solving an optimization problem not exploited yet by literature, which we have named Optimal Billing Sequencing (OBS). The objective of the GA proposed is to automate pick sequencing, which addresses the process of allocating the stock available for sale to the purchase orders in a portfolio, so that the maximization of the billing is the optimal result for the OBS. A modelling and computational simulation methodology has been employed. Such methodology is designed to enable the GA to meet the boundary conditions established by predefined decision restrictions and parameters. We have reached the conclusion, by means of experimental tests, that the GA developed satisfactorily solves the problem studied. In addition to a low computational overhead, the GA reduces operating costs and speeds picking decision-making processes and billing processes.
Keywords: Genetic Algorithms; Picking process; Billing sequencing (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-015-1116-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:2:d:10.1007_s10845-015-1116-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-015-1116-7
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().